
1 
b 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 3890 

ON POSSIBLE SLMILARITY SOLUTIONS FOR THREE-DIMENSIONAL 

INCOMPRESSIBLE LAMINAR BOUNDARY LAYERS 

III - SIMILARITY WITH RESPECT TO STATIONARY POLAR 

COORDINATES FOR SMALL ANGLE VARIATION 

By Howard Z. Herzig and Arthur G. Hansen 

Lewis Flight Propulsion Laboratory 
Cleveland, Ohio 

p LIBRARY copy 
Washington JAN 1? 1957 

January 19 57 LANGLEY AEROHAUIICAL LABORATOC? 
LIBRARY NAM LAKCLEY FIELD, VlRGiN~b 



81;111.11!11111!111~IFlllllllllll’llllu;1111 
31176bi434Oj83 

. 
NATIONAL ADVISORY COMMITTRR FOR AERONAUTICS 

. - 
TIEHNICAL NOTE 3890 c 

ON POSSIEKE SIMILARITY SOLUTIONS FOR THREE-DIMENSIONAL 

2 
Y . 

. 

INCOMPRESSI8IELAMINARBOUNDARYL4YERS 

III - S~ITYWITHRESPECTTOSTATIONARYPCLAR 

COORDINATES FOR SMALL ANGIE VARIATION 

By Howard Z. Herzig and Arthur G. Hansen 

SUMMARY 

Approximate solutions are obtained describing mainstream flows con- 
fined to regions of small angle variation over flat surfaces for tbree- 
dimensional, laminar, incompressible, thin boundary-layer flows having 
similarity with respect to stationary polar coordinate systems. The solu- 
tions, summsrized in a table, include accelerating or decelerating flows 
and stagnation-point, spiral, or circular flows. An experimental compari- 
son of limiting overturning at the wall. showed good agreement for the 
first 10' of turning of circular mainstream flow. 

INTRODUCTION 

In addition to providing an insight into secondary-flow behavior 
associated with laminar boundary-layer flows, the experimental investiga- 
tions of references 1 to 3 demonstrate that the information thus obtained 
for laminar flows can be used to interpret and to correlate flow measure- 
ments taken in turbomachines at operational conditions. These experimental 
investigations thereby provide an important link between applied turbo- 
machine research and the similarity-type boundary-layer analyses developed 
in references 4 to 12. The link is further strengthened by the colnbined 
theoretical and experimental investigation of reference 13. In reference 
13, boundary-layer similsrity solutions sre obtained for main flows con- 
sisting of streamline translates (i.e., the entire streamline pattern can 
be obtained by translating any particular streamline parallel to the 
leading edge), and the theoretical predictions of boundary-layer over- 
turning (more than mainstream turning) near the surface are in close 
agreement with experimental results obtained by tracing the boundary- 
layer streamlines with smoke flow-visualization techniques. 
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Using a generalized similarity variable 7, reference 14 extends 
these results analytically t-a obtain all possible flows with boundary d 
layers having classical similarity with respect to stationary rectangular 
coordinates. The dimensionless boundary-layer velocity components in the 
plane of the surface are assumed to have similarity with respect to their _ 
respective coordinates. This similarity is expressed by means of two 
suitably defined functions of the similarity variable. The boundary-layer 
equations are then transformed to equations involving the mainstream flow 

- components, their derivatives, the similarity functions, and theirderiva- 
tives. All the mainstream flows are then determined for which the trans- 
formed boundary-layer equations reduce to ordinary differential equations : 1 
in the similarity functions and their derivatives. Four distinct fami- 
lies of such mainstream flows are obtained in reference 14, including 
cases of accelerating or decelerating flows for quite general streamline 
paths. The main-flow streamlines are not required to be translates, nor 
are they restricted to regions of small turning in reference 14. 

In reference 15, solutions are-obtained for the mainstream flows 
whose boundary-layer velocity components in the plane of the surface have 
similarity with respect to the corresponding polar coordinates. Thus, 
exact solutions are obtained for spiral, circular, and stagnation-point 
flow configurations with no restrictions on mainstream turning. For the 
solutions thus obtained, however, 
(A properLeading edge, 

a proper leading edge cannot be defined,. 
which corresponds theoretically to a real physical 

leading edge, would be a line or curve of zero boundary-layer thickness 
on the surface, downstream of which the boundary layer develops.) 

The present investigation extends the analysis of reference 2.5 by 
considering the flows in a sector-region of smalI central angle 8. The 
purpose of this investigation is to determine mainstream flow solutions 
for which the transformed boundary-layer equations reduce to ordinary 
differential equations. Solutions are obtained for four new families of 
mainstream flows with boundary layers-having similarity with respect to 
the polar coordinates in the plane- of the surface. Included here are 
cases for flows over well-defined leading edges. It is important to note 
that experimental investigations (refs. 1 to 3 and 13) indicate that in 
typical turbomachine configurations a large portion of the -end-wall 
boundary layer at the inlet to a passage hascom$letely crossed from the 
pressure to the suction side of the passage when-the mainstream has been 
turned less than 30°. Thus, in describing physical flow, it-appears not 
unreasonable to restrict the analysis to small central-angle sectors. 
The- regions where this assumption might be considered reasonable are 
established by a theoretical and experimental colqparison of the boundary- 
layer-limiting flow deflection (ref. 13) in a circular two-dimensional 
channel. 
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SYMBOLS 

a,b,c,C 

F,Fh > 

WZ-d 

f(d,@W 

h-,8> 

G,Gh > 

xl g,dr, 8) 
gi h(8) 
7’ 
3 

m k,m,n 

r,@,y 
. 

t 

u,w 

T,q(r,8) 

constants 

function of similarity parameter, u P UFl(q) 

function of similarity parameter, eq. (45) 

arbitrary functions of r 

arbitrary function of r and 8 

function of similarity parameter, 
w I k'(q) for W = 0 

w = WC+*(q) fqr W # 0, 

function of coordinates r and 8 

function of 8 

constants 

cylindrical coordinates 

constant 

mainstream velocity components in 8 and r direc- 
tions, respectively 

boundsry-layer velocity components in 8, y, r direc- 
tions, respectively 

function of coordinates r and 8, w I %G'(IJ) for 
w=o 

boundary-layer deflection at surface 

similarity variable q = yg(r,8)/2/G- 

coefficient of kinematic viscosity 

Subscripts: 

i = 1,2,3, . . . index nu&ers 

c Superscripts: 

r Primes denote differentiation 
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ANALYSIS 

. 

-’ - 

Boundary-Layer Equations in Stationary Cylindrical Coordinates 

The three-dimensional laminar incompressible.thin boundary-layer 
equations in cylindrical coordinate form for flows over flat (or nearly 
flat) surfaces with stationary coordinate axes as shown here 

w,w 

are given by 

u au $+yyj+w au a2u g+vJyvq=T u au + w au 
+rae ar (14 



I'TACA TN 3890 5 
. 

in the tangential direction and 

U2 u aw aw aw T+r;5Fi+wbF+y~ a2w v2 u aw -V-=-y+T;a aY2 +wg (lb) 

in the radial direction, where u, w, and v are the boundary-layer 
velocity components in the 8, r, and y directions, respectively. Con- 
sistent with the restriction to thin boundary-layer flows over flat (or 
nearly flat) surfaces as required for the formulation of the boundary- 
layer equations (eq. (l)), th e mainstream velocity components are 

u= 

w= 

The equation of continuity for the 

1 au aw r~+~ 

Ub,@ 

Whe) 
boundary-layer flow is 

(24 

(2b) 

(14 

The appropriate boundary conditions are 

u=w=v=O for y=O 

u+u 

> 
as Y-+0 

w+w 

(la) 

(14 

Similarity with Respect to Stationary Polar Coordinates 

The boundary-layer equations may be transformed by the use of a 
generalized space variable 

(3) 

and by defining 

to a new system of coordinates r, 8, and II. The definitions (4a) and 
(4b) are the requirements for similarity of the boundary-layer velocity 
components in the plane of the surface with respect to their corresponding 
polar coordinates. 
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The choice of polar coordinates (as in ref. 15) requires an additional 
precaution beyond those needed for similarity with respect to rectangular 4 
coordinates. In rectangular coordinates when either U or W is zero 
(see ref. la), the mainstream flows are straight, there is no secondary- 
flow overturning in the boundary layer, and complete similarity solutions 
have been obtained for the equations of the resulting two-dimensional - 
boundary-layer flows (refs. 4 and 5). In the present case, however, when 
the mainstream radialcomponent W = 0, there is curvature of the main- 
stream flow, U + 0, and three-dimensional boundary-layer.overturning 
results (i.e., w # 0, for W = 0). Under these conditions, equation (4b) Ei 
does not apply. Instead, a new function G(r,B) is defined for E 

w = W(q), 77 # 0 (4c) 

Accordi-wly, it is convenient to treat W + 0 flows separately from 
w= 0, w# 0 flows. 

w f 0. - When the mainstream flow has both U and W components, 
the corresponding boundary-layer velocity components are defined by 
equations (4a) and (4b) as functions of the similarity parameter q. 
Corresponding to the conditions of no flow at the surface (eq. (la)), the 
boundary conditions on F' and G' are 

F' (0) = G'(O) = 0 (54 ' 

Corresponding to the condition (le) that the u and w boundary-layer 
components merge smoothly into main-flow components U and W, 
respectively, 

lim F'(q) = 1 
11-*= 

> 

(W 
lim G'(q) = 1 

II+- 

Now v may be determined by integration of the continuity equation 
using (4a) and (4b): 

p .w yF' - W w yG' + f(r,8) (6) 

where f(r,8) is an arbitrary functlan arising from integration. 
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In order that v = 0 for y = 0 as required, it is possible with- 

out loss of generality to set the boundary conditions 

F(O) = G(0) = 0, and f(r,8) = 0 (5c) 

(See appendix C, ref. 14, for a discussion of the necessary and sufficient 
boundary conditions.) 

UPOn BubBtitUtiOn of equations (4a), (4b), and (6), equation (la) 
becomes (for W # 0) 

z (F'G' - GF" - l} +; g (F'2 - FF" - 1) + We (FtG' _ 1) + 

and equation (lb) becomes 

U2 
wr (1 - Ft2) + z -+ (F'G' - 1) + g ((3’2 - Gf$' _ 1) _ $ ?!$ -J@' + 

63) 

As in references 14 and 15, the purpose of this investigation is to 
determine mainstream flow solutions for which the transformed equations 
(7) and (8) reduce to ordinary differential equations. As an extension 
of reference 15; the present analysis considers flows restricted to a 
sector-region of small central angle 8. The mainstream flow conditions 
are sought which make the coefficients of the functions of q 
proportional. 

The most general approach would be to rewrite (7) and (a), grouping 
the coefficients of like terms in G,F and their derivatives, and then 
to require proportionality of these grouped coefficients. It can be 
shown, however, that no cases arise beyond those obtained more simply by 
requiring proportionality of the individual coefficients in (7) and (8). 
Under these ordinary differential equation conditions (abbreviated to 
o.d.e. conditions), the common variable terms in the equations may be 
divided out, leaving ordinary differential equations for F and G. The 
actual numerical solutions of the ordinary differential equations are not 
attempted herein. 

l 



8 NACA TN 3890 

For convenience, the coefficients for the fimctions of q in equa- 
tions (7) and (8) are presented here in the order of their appearance. 
With W # 0, they are 

0 7 g2 

The 0.d.e. conditions require these nine coefficients to be pro- 
portional to each other. 

w = 0. - When W = 0, the corresponding boundsry-layer equations 
(la) &z-(lb) become 

u au y + - ‘02u rB+wg+vg- v--/g 

U2 u aw a2w ~2 --+- 
r r~+wg+v&y.g==-~ 

(Sal 

The equation of continuity for the boundary-layer flow remains unchanged: 

1 au aw w + av o 
'Fz7+aT+r 3y= 

The boundary conditions now are 

u=w=v=o for y = 0 

u+u 

> 

as Y-+ OD 
w+o 

(SC> 5 

. 
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For main flows such that W = 0, define 
L 

u = UF'(q) (ha) 

w ft wG'(q) (4c) 

where w = W(r,@) # 0. The boundary conditions on Fr and GL required 
40 satisfy boundary conditfons on u and w in equations (9) (W = 0, 

x 
W(r,e) # 0) =e 

x F' (0) = G'(O) = 0 (lOa> 

lim F*(q) = 1 
rl+- 

lim G'(q) = 0 
> 

(lob) 
3 
j: q -,- 

The expression for v obtained by integration of the con+uity 
e equation (lc) is the same as (6), with W being replaced by W: 

As before, the boundary conditions chosen as sufficient to provide . 
that v = 0 for y = 0 are 

F(O) = G(0) = 0 

/(r,e> = 0 > 
(1oc 1 

Substitution of equations (4) and (II) into (Sa) and (Sb) produces 

B (F'G' - GP) +;g (F~S - FF" - 1) + T* FCC+' c 
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The argument concerning determination of the o.d.e. conditions by 
means of relations between the coefficients of the functions of q in 
(12) and (13) remains unchanged. 
the same as the coefficLents for 
W replaced by T. 

These coefficients, it may be noted, are '- 
equations (7) and (a), respectively,. with ,- 

Solutions for Small Variat-ion of 8 

AS the flow is considered restricted to regions of small variation 
of 8 (i.e., regions that are narrow sectors having small central angles), 
coefficients will be neglected that are of Second and higher order in 8 
relative to the other coefficients. 
that U(r,B), W(r,8), 

In order to do this, it is assumed 
and q(r,8) are expressible as 

U(r,@> = f~(rb$@) 

Wb,e> = f~W-$f% W f 0 

i(r,8) = f;(r)h2(8), W = 0 . 

and that, in the region of interest chosen for convenience about 8 = 0, . 
hl(8) and h2(8) are adequately represented by 

hl(8) = a8 t 

h2(8) = bern 

Hence, U, W, and w in the neighborhood of -8 = 6 are considered to.be 
defined by 

U(r,8) = fl(r)8t 
7 

W(r,8) = f2(r)Qm 

q(r,8) =I f2(r)em I 

(14) 

As will be- seen later, in some cases this assumpt-ion further results in 
solutions that have properly defined leading 'edges. Solutions are ob- 
tained for the main flows in the following manner. 
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By BUbBtitUtiOn, the coefficients of the functions of F and G 
in equations (7) and (8) for W # 0 or in equations (12) and (13) for 
w= 0 become 

0 5 fl(r)O+' 

@ 
fi(r) a In 2 
-5-Y 8t 

@ fg(r)em 

0 g2 

(fl(r) I2 
@ ypy-- 82t-m 

0 fib- > 
9mr 8t-1 

As before (refs. 14 and 15), the objective is to find conditions 
(0.d.e. conditions) that make these coefficients proportional to one 
another. Then the common r and 8 factors may be divided out, and the 
transformed equations reduce to ordinary differential equations. Here, 
however, with 8 small, it is assumed that terms of second and higher 
order in 8 relative to thereat are negligible. 

The procedure will be to establish the relations between constants 
m and t (the powers of 8 involved} or the assumptions concerning 
fl(r) or f2(r) that will lead to proportionality among the terms. The 
following possibilities are suggested. 
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m= t - 1. - When m = t - 1, em is a common factor of all the 
coefficients listed in (15) except- @ and may be divid-ed out, yielding 

(16) 
. 

Coefficient @ is the coefficientof the F"' and G"' terms in the 
transformed boundary-layer equations. It must not be permitted to vanish, 
for that would reduce the order of the transformed equations, and the 
number of boundary conditions on I? and G would then exceed the order 
of the equations. Consequently, @ is made proportionalto @, with 
the result that 

g2 = alfiGrn 07) 

Coefficient @ is therefore-independent of 0. Coefficient @ is of 
second order in 0 relative to the rest and is therefore neglected. 
From o.d.e. conditions on 0 and @, 

fl = a2f2 (18) . 
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and, from 0 and @, 

(191 

Therefore, combining (14), (17), (18), and (19) and redefining the 
constants ai for convenience results in 

u =I arne~l 

w= brnem > W#O 

I 

(20) 

g2 = crnD1em 

The corresponding ordinary differential equations are obtained by 
substitution in equations (7) and (8): 

b(n+l)(F'G' - 1)-w GF"+a(m+l) k~s)~-l]-w FP- 0" = 0 

am(F'G* 

with equation (5) giving the boundary conditions. When 

(21) 

FG” - CC+“’ = 0 

(22) 

w = 0, 
E= brnem # 0; and substitution into equations (12) and (13) yields 

b(n+l} FIG'-w GF"+a(m+l) (F ) [ * 24&59 3’3’“-cF”‘=: 0 

(23) 

am(FtGr) + bn(Gt)2 - v a” - w n” - cG”’ = 0 (24) 

with equation (10) giving the boundary conditions. It is important to 
note that the boundary conditions on G' are different for W#O in 
equations (21) and (22) from those for W = 0, % # 0 in equations (23) 
and (24). While a more general case appears to be 

m=t- k, k = 1,2,3 



li NACA TN 3890 

only the case diticussed here, k = 1, has any practical significance-for 
this analysis. When k 32, then, for small 8, U is negligible when 
compared with W, and the 

m=t+l.-When m 
all terms by Brnm2 give 

resultant flows sze cases of U = 0. 

az t + 1, substituting into (15) and dividing 

Q : 02 
\ 

@y-by 

(25) 

From the o.d.e. conditions on 0 and @ it can be seen than g2 
has the form 

g2 = ; fiem-2 (26) 



. 
NACA TN 3890 15 

Coefficient @ is therefore independent of 8 and so 0, 0, 0, and 
@ are considered negligibly small. The modified coefficients are now 
written 

0 10 

@ y fl 

0 3 0 

@ q fl 

0 5 0 

0 6 0 

@ 2 fl 

(fl12 
@T 

@ : fl 

From the o.d.e. conditions @ and @ 

fl = b2f2 

and no further restrictions on the form of 

(27 > 

it can be seen that 

(28) 

fl or f2 are required, as 
all coefficients are proportional. Then using (14), (26), and (28), U, 
W, and g2 are written 

u= af(r)P' 

w= bf(r)em, w f (29) 

g2 = f f(r)emw2 

and equations (7) and (8) become 

a(m _ 1) EFl)’ - 11 - y IT” - CF”’ = 0 (30) 
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- $ EFS)2 - 11 + am(F'G' - 1) - y FG" - cG"'= 0 (31) 

The--boundary conditions are given by equation (5). 

When W = 0, T = bf(r)em # 0, 
(13) produces 

substitution into equations (12) and - 

a(m - 1) [(FB)2 - 13 - 7 FF" - CP = 0 

- -f k,,)' - d + am(F'G') - y FG" - cG"'= 0 

(32) 

(33) 

, 

Again, while 

m = t-+ k, k = 1,2,3 

appears more general, only k = 1 actually applies here. When k )/ 2, 
W = 0 under the present-assumptions, and the resulting flow is equiva- 
lent to taking b = 0 in equations (20) or (29). 

m = 0. - When m= 0, from o.d.e. conditions 0 and @ and the as- 
sumptmhat terms of second or higher order in 0. relative to other 
terms may be neglected, t = 1, -1, or 0. The case- t = 1 corresponds 
to the case of equation (20) and t = -1 to the case of equation (29). 
If t=o,u= U(r), fl is proportional to f2, and therefore 

+ 

I 

.- 

U 3 a,$ 

W(or T)=brn (34) 

g2 =I crn'l ) 

This case and the resulting ordinary differential equations are the same 
as were obtained by taking U = U(r), m = 0 in the exact solutions 
(ref. 15). 

t = 0. - When t= 0, examination of the 0.d.e; conditions discloses 
no cases not already obtained by the analysis. 

fib) = a or f2(r), = b. - Where fl(r) is taken to be a constant, 
a, u= U(6) alone and the coefficients in (15) become 
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0 4 *t-l 

0 3 0 

@ $+!j$ et 

0 f2 a In g2 em 
Tar 

0 6 f;em 

0 g2 

@ --& e2t-m 

@ t! et-1 

(35) 

Just as before, two significant possibilities occurJ m = t - 1 and 
m=t+l. When m=t- 1, equation (18) applies and f2 is a constant. 
This corresponds, of courseJ to n = 0 (es. (20)). When m- t + 1, the 
analysis leading to equation (28) applies, and the resultant flows cor- 
respond to f(r) constant in equation (29). 

When f2(r) is constant, the same results are obtafned and fl(r) 
must likewise be constant. 

RFSULTS AND DISCUSSION 

The analysis of three-dimensional, laminar, incompressible boundary- 
layer flows having similarity with respect to polar coordinates has led 
to two different categories of solutions. in the first are the solutions 
for mainstream flows described in reference 15. In the second category 
sre perturbation-type solutions obtained here whose validity is restricted 
to regions of small variation of angle 8. The mainstream flows for the 
latter category are described by equations (201, (291, and (34). 
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The flows represented by equation (34) are actually a special case 
of the exact solutions of reference 15 and will not be discussed further. 
As a result of these analyses, table I has been prepared, which summarizes 
the four new cases obtained here of mainstream flows over a flat or 
slightly curved surface for which the boundary-layer flows have similarity 
with respect to polar coordinates. 

The cases are as follows: 

Case I: U = 8Pew1 

w= brnEJmJ b # 0 

Case II: U = ar%m+l 

w=o 

5i = brnOmJ b # 0 

Case III: U = al?(r)*"-1 

W = bf(r)amJ b # 0 

Case IV: U = af(r)e 

w= 0 

77 = bf(r)emJ b # 0 

As described earlier, secondary flows 
component of mainstream flow vanishes (W = 

exist even though the radial 
0). For such cases, a function 

7 = ~(r,*) # 0 is defined, and the boundary-layer radial component of 
flow is expressed as 

w = %‘(,fJ) (4c) 

The Mainstream 

When W # 0, the mainstreams are spiral flows. For W = 0, circular 
mainstream flows are obtained. I 

u, w, G. - In regions where the thin-boundary-layer theory is ap-- 
plicable, the mainstream is very nearly parallel to the surface; U and 
W are functions of r and 8 only. 

The analysis for the exact solutions for boundary-layer flows having 
similarity with respect to stationary polar coordinates (ref. 15) showed 
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that only one form of U and W (or ?) is possible, that is 

w (or 7) = brneme 
(361 

The present analysis results in obtaining a much wider variety of flow 
solutions, represented by equations (20) and (29). In particular, there 
are no restrictions whatsoever on the functional relation of U and W 
( or 7) to r in cases III and IV (eq. (29)). An example might be 
chosen of circular main-flow streamlines where the inlet velocity U at 
the leading edge 8 = 0 varies in a sinusoidal fashion. The secondary- 
flow overturning would then cause the boundary layer to pass through 
regions where the main-flow velocity is alternately increasing and de- 
cress ing . As will be seen later in the discussion of the boundary-layer 
thickness and g(r,8), the boundary layer will correspondingly become 
thinner or thicker. 

The small-angle solutions were obtained by assuming that second and 
higher qower terms of 8 could be neglected. In all these cases, U and 
W (or W) are obtained as products of powers of r and 8. In cases I 
and II W/U (or G/U) is proportional to i/e. In cases III and IV, W/U 
( or f/U) is proportionalto 8. 

Projection of main-flow streamline on surface. - The equation for the 
projection of the main-flow streamline on the surface for W # 0 may be 
obtained by integrating 

w dr -=- 
U rd@ (37) 

Whenever W # 0 and U f 0, spiral mainstream flows result (cases I and 
III). For W = 0, circular main-flow streamlines result (cases II and IV). 

Slope of projected streamlines. - The slope of the projected stream- 
line with respect to 8 = 0 (the tangent of the angle between the tangent 
to the projected streamline curve at a point and the line 8 = 0) may be 
obtained from 

slope = 
$tan 8 + r 
dr (38) 
ae- r tan 0 

It is found by substitution into equation (38) that the slope is inde- 
pendent of.radial position r for all cases. 
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Irrotationality. - For mainstream flows cogidered here and in re- 
gions of thin boundary layers, as required for this analysis, only the 
component of vorticity normal to the surface .r 

, 

1 aw au u 
rae-ar-'E: (394 

can be much different from zero (ref. 14). The values of the constants 
specified under the listing "Irrotationality" (table I) were obtained in 
each case from 

.- 
.- 

1 aw au u o 
rae-ar-r= (39b) 

These values set the conditions for nearly irrotational mainstream flows. .- 

The Boundary I;ayer 

As discussed in references 14 and 15, the physical interpretation of - 
the boundary-layer behavior that the mathematical representations describe -Yl 
is best found by examining the behavior of q and in particular g(r,B). 

The boundary-layer thickness on the surface at a point- r,B is in- 
versely proportional to g(r,B) at the point. In order for the theoreti- 
cal boundary layer-to have a beginning at a lead&g edge with zero thick- 
ness, as in a real fluid, there should be- a line along the surface for 
which g(r,e) is infinite while the velocities remain finite. In the 
exact solutions presented in reference 15, this occurs in the finite part- 
of the plane only at the point r = 0 for value&of n c 1. For n-S 1 
the boundary layer--in reference 15 maybe-considtied to have a "beginning" 
only at r = 8. However, the mainstream velocities there take on 
"infinite" values. 

In the present report (flows for small angle 0), for cases I and II 
when -15 m < 0, g(r,e) and hence 11 becomes infinite along the line 
8 =I 0, while U is finite as required. In case-I, however, W (and w) 
are unbounded, so .a proper leading edge does not exist there. .JF ca+e _ 
II, w = 0 but R is unbounded at B : 0. In cases III and IV, for 
15 m c 2, there is a properly defined leading edge at 8 = 0, where 
g(c,B) take s on infinite values and where II, uJ W, and w remain -L 
finite. For 14 rn.< 2, in cases III and IV, U = W = 0 at the leading 
edge. For. m = 1,--U -is independent of..8 and may be.different from 
zero at the leading edge. 
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In cases I and II for m > 0, and in cases III and IV for m > 2, 
along the line 8 = 0, the mainstream and the boundary-layer velocity 
components are all zero. Even though the boundary-layer velocities match 
the mainstream in these situations, a proper leading edge does not exist 
there because g(r,*) equals zero, corresponding to an "infinitely" thick 
boundary layer. As in reference 14, such accelerated-flow cases may be 
considered appropriately by confining the discussion to regions where the 
requirement of thin boundary layers is satisfied. 

The Ordinary Differential Equations 

The actual numerical solutions of the ordinary differential equa- 
tions are beyond the scope of the present investigation. The literature 
contains examples of numerical solutions for particular values of the 
constants. Some of these examples are noted in the listing "Comments and 
References" associated with each case in table I. 

The present analysis simply derives the ordinary differential equa- 
tions that can be obtained with the underlying assumptions. a any 
particular case of interest for which the equations are appropriate, the 
existence of the numerical solution and its computation must be obtained 
individually. Nevertheless, some general remarks (in part repeating 
material from ref. 14 here for convenience) can be made here (as in ref. 
11) concerning the numerical solutions. 

Separation of F and G. - Under certain choices of the free con- 
stants involved, the functions F and G are separable; that is, one 
equation of the pair of ordinary differential equations will contain 
terms in only one of these functions and its derivatives. Numerical 
solutions are much more readily obtained in such cases than when the 
functions are not separated. 

An example is provided when a = 0 (case I)J so that equation (22) 
then contains terms only in G and its derivatives. In all cases where 
the functions can be separated, the equation is thereby reduced to a 
Falkner-Skan type equation. The complete solutions to Falkner-Skan equa- 
tions have been obtained in references 4 and 5. Thus, equation (30) (case 
III) and equation (32) (case IV), in which the functions are already 
separated, are all Falkner-Skan equations. 

Although it is not apparent from the equations in the table alone, 
when a = 0, then u = 0 and equation (la) and therefore equations (21), 
(23)J c30) J and (32) disappear. In cases I and III (W # O), when a = 0, 
the flows are straight two-dimensional flows along radial lines out from 
a stagnation point. In cases II and IV (W = O), a = 0 is the trivial 
case of no mainstream flow. 
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In case 111, when a = b, F = G. If, in addition, m = 0 and 
c = -a J equation (30) becomes equation (9.12) of reference 16: 

F II, _ 3-2 +l=O -. (40) 

As pointed out in reference 16, this is one of the-few cases when the 
boundary-layer equation can be solved in closed form. The solution is 

FL;= 3 tanh2 

When c=a=b and m=O, equation (30) becomes 

F"' + FS2 - 1 = 0 (42) 

Letting 

SC-7 > = Fh) (43) 
- 

then by differentiation of equation (43) and substitution, equation (42) 
becomes - - 

P" -P2 -i-l= 0 (44) - 

and the solution thereby is seen to be 

p+ 3tanh2 A+tanh-1 
( 2/z 0 

2 -2 5 

Linearity in u or w. - As discussed in reference 14 and applied 
in reference 13, an extension of the- solutions beyond strict similarity 
of the velocity component can sometimes be made by addition of solutions 
where the boundary-layer equations are linear in u or w. Apparently 
such extensions are not possible for the boundary-layer flows investi- 
gated here, because equation (1) is always nonlinear in u and in w 
except for the typical case of no mainstream flow.. Nevertheless, there 
is the complete freedom from specification of the form of f(r) in cases 
III and IV. Accordingly, if 

Ul = alfl(r)8 m-l 

and 

U2 =I a2f2(r)em-l 

I. 

. 
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are possible solutions for mainstream flows, then 

u = Ul + u2 = 
LT a$+) + a&4rl 1 

. 

em-l = af(r 

likewise represents a possible mainstream flow, although solutions for 
u and w cannot be superimposed. This fact (the reasoning is the same 
for W as for U) is evident also from the ordinary differential equa- 
tions for cases III (eqs. (30) and (31)) and IV (eqs. (32) and (33)), 
which are independent of the form of f(r). 

Comparison with Experiment 

An experimental investigation was made to determine whether the 
theory provides a reasonable approximation of the limiting flow deflec- 
tions for the particular case of circular flow over a flat plate. Of the 
cases presented, this case is the one most likely to be encountered in 
actual practice. 

Theoretical prediction of limiting deflection. - The case that will 
be investigated is case IV with m = 1. Under this assumption equations 
(32) and (33) become, respectively, 

Et+ 
2 F 0 1" = (461 

lx!" 
-F’G’ *- (F’2 - 1) + y + G”’ = 0 (47) 

where the following relation between the various constants has been 
chosen: 

C=a=-b 

Equation (46) is the Blasius equation, and values for F are tabulated 
in reference 13. Reference 12 shows that the function G' in equation 
(47) 1 s expressible in the form 

G' = P(v) - F'(v) (48) 

where P(q) is the solution of the equation 

P” + 5 - F’P x -1 (49) 
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with the boundary conditions 

lim Ph) = 1, P(O),= 0 
7 -b- 

The solution of equation (49), however, 
the values of P(T), (Pl(7) I 

is presented in reference 13, and R 
n ref. 13) are presented in tables. iifJ 

Now the angle of flow deflection of the boundary layer at the plate 
surface is determined by -I 

Y = arc tan 

= arc tan G' 

( ) 
lim 7 

7 4. 

As G'(0)/FC(O) i s an indeterminate form, application of L'Hospital's 
rule gives 

Y= arc tan 
( > 

lim -j$ 
T-+0 

= arc tan 
( 

$Ilo+z 
> 

=I arc tan 
[I,Yo 6 - 91 

The value of P1 
4.270. Hence, 

(0)/F"(O), however, is determined in reference 12 to be 

Y = arc tan 3.270 (501 

From equation (501, the equation for the limiting deflection line on 
the plate surface can be found as the solution of the differential 
equation: 

-. 

ldr 
rde = tan y = 3.270 (51) 

Equation (51) has the solution 

r = (const.) e3S270 ' (52) 
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Experimental determination of limiting deflection. - The experimental 
determination of limiting flow deflection was made by means of smoke flow 
visualization (apparatus and procedures described in-ref. l} in a Lucite 
two-dimensional circular channel of rectangular cross section. Tests were 
conducted on a plate parallel to the base of the channel and fastened to 
the channel walls at a distance of approximately one-third the channel 
height. With a maximum Reynolds nwiber of about 6x104, the flow for these 
tests was well within the laminar range. 

Figure 1, a view through the Lucite top of the channel, shows smoke 
introduced into the mainstream at approximately a midchannel position. 
On the test plate shown in the photograph, the circular white lines cor- 
respond to the theoretical mainstream flows. The straight lines orthogo- 
nal to the circular lines represent loo increments in 0. The dotted 
lines appearing on the plate are the theoretical limiting deflection lines 
based on equation (52). The main-flow streamlines as depicted by the 
smoke trace were found to follow closely the theoretical main-flow stream- 
lines well beyond the region of interest near the leading edge of the 
plate, although this is somewhat obscured by parallax in figure 1. Near 
the exit of the channel, some deviation of the smoke trace from the cir- 
cular arcs occurred because of secondary-flow accumulations. 

Figures 2(a) and (b) show limiting flow deflection determined by 
introducing smoke directly on the plate surface. The photographs show 
that the theory predicts limiting deflection very well in the range 
0 5 8 s loo. Beyond loo the theory predicts a greater overturning of 
flow than that indicated by the experiment. These results give an order 
of magnitude to the range of values of 8 where the small-angle approxi- 
mation appears to be reasonable. 

Prediction of limiting deflection based on translate flow. - Refer- 
ence 12 presents an analysis of three-dimensional boundary-layer flows 
when the main-flow streamlines are translates (i.e., all streamlines are 
obtained from a single streamline by propagation of the streamline par- 
allel to the plate leading edge). As a matter of interest, this theory 
was also used to predict limiting deflection for the present case. 

In effect, a comparison can be made between the results predicted by 
two distinct kinds of approximations. In the small-central-angle vsria- 
tion method the approximation is made in the solution of the boundary- 
layer equations while the description of the main flow is exact. In the 
streamline-translate method the approximation is made in the representa- 
tion of the main-flow streamlines while the solution to the boundary-layer 
equations obtained is exact. 

For the streamline-translate method, a mean value between the radius 
of the inner wall of the channel and the radius corresponding to the 
starting point of the outer limiting line shown plotted in the photographs 
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was chosen as the defining radius of a typical circular-arc streamline in 
translate flow. Since circular-arc translate-flow is analyzed-and the 
limiting flow deflection is determined in reference 12 (see fig. 5, ref. 
12), the results could be applied directly in the present investigation. 
The basic assumption underlying such an application is that circular-arc 
translate flow of-the-type described is a reasonsble approximation'ofthe 
concentric-circular-arc streamline flow that actually exists in the 
channel. 

The results of the analysis are presented in figure 2(c). A 30° sec- 
tion of-the channelzis sketched, and the theoretical limiting deflection 
lines for both the translate-flow analysis and the small-angle analysis 
are indicated. The circles appearing on the sketch represent points on 
the smoke flow pattern as measured from the photographs. It-can be seen 
from figure 2(c) that the translate-flow analysis is less accurate than 
the small-angle.analysis updo about 10'; but, from loo on, the agreement 
between theory and experiment improves for the translate analysis. After 
20° it appears that the predicted limiting line and the actual limiting 
line are very nearly parallel up to the point-where wall interference 
causes the boundary layer to deflect in a circumferential direction. 

CONCLUDING REMARKS 

Exact solutions were obtained in reference 15 describing the main- 
stream flows over a flat or nearly flat surface for which the thin laminar- 
boundary-layer flows have similarity with respect to stationary polar co- 
ordinates. The solutions thus obtained were of the form 

W = brneme 

By suitable choice of the constants a, b, n, and m, the main flows may 
be stagnation-point, spiral, or circular flows. The boundary layers for 
these exact solutions have no properly defined leading edge in the finite 
part of the plane, resulting in some awkwardness in relating these theo- 
retical flows to real physical flows. 

The present analysis is restricted to regions of small central 
angle 8. The appropriateness of the restriction in physical situations 
has been-established experimentally (refs. 1 to 3 and 13). The mainstream 
flows obtained herein are 

u = arnem+l 

W (or 5) = brnem 
(cases I and 11) 

.- 
. 

. 
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c 
U = af (r)em-l 

W (or 7) = bf(r)em 
(cases III and IV) 

In cases III and IV for 15 m (2, a properly defined leading edge can 
be obtained along the line 6 = 0 where the boundary layer has zero 
thickness and the mainstream velocity components do not become infinite. 
Although different velocity distributions are obtained here, the projected 
main-flow streamline configurations possible are the same as those of ref- 
erence 15; that is, (1) stagnation flows along radial lines from a stag- 
nation point, (2) spiral flows out from (or in toward) a central point, or 
(3) circular flows. 

Actual numerical solutions of the transformed boundary-layer equa- 
tion's are not attempted here. Particular examples are noted, however, 
for which solutions have been obtained elsewhere. 

An experimental comparison of limiting overturning at the wall under 
circular mainstream flow using smoke flow-visualization techniques showed f good agreement for the first loo of the mainstream turning. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 26, 1956 
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TABLE I. _ SlXEARITY SOLUTIONS IN STATIONARY POLAR COORDINATES FOR SMALL AMLE VARIATION 

(a) Case I 

u 

W 

t7 

Ordinary 
differential 
equations 

Boundary conditions 

Frojection of main- 
stream on surface 

Slope of projected 
streamline with 
respect to 0=0 

Irrotatlonality 

Linearity In 
u and w 

Separation of 
P and Q 

Comments and 
references 

brnem, b#O 

y(E1Jl;ley2 I y(g$'2 = y(gi)1'2' c p 0 

(21) b(n + l)(P'G' - 1) - w QF" t a(m t 1) [(PI)" -11 - w FF"- cFm = 0 

(22) am(F'G' - 1) + bn[((ll)g - ~]-JJv.~" - WFG" - 0~"'s o 

PI(O) - G’(O) =L F(O) = G(O) = 0, lim Fl(t)) = llm G!(V) = 1 
t-l+- n- I 

r m cebia spiral flow atreamllnea (a + 0) 

$ tan 0 + 9 

k-etme 

m=a(n+l)=O 

Not possible for thle case 

I 1 ;‘2 
Not possible for thle case 
a-0 

a = 0, stagnation flow: eq. (la) and eq. (21) vanleh and eq. (22) becomes a 
Falkner-Sken equation with solution completely known, refe. 4 and 5. 

Ref. 0: a=o=n=-l.m=b.b--c from ref. 0. 



TABLE I. - Continued. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES 

FOR SMALL ANGIE VARIATION 

(b) Case II 

u arnewl 

W 0 

iv brnem, b + 0 

9-l 

Ordinary 
differential 
equations 

y(q@y2 = +&y*, c # 0 

(23) b(n + 1) FIG' -w GF" + a(,+l)~F1)*-~ - wF&cF"'= 0 

(24) am(FlGl) + bn(Gv)2 - w QG" _ &+ m" _ c~"' I 0 

Boundary conditions PI(O) = G'(O) -F(O) = G(0) = 0, llm F!(R) = 1, llm G!(R) = 0 
I n+- n-r- 

Projection of main- r p C 
stream on surface , circular-flow streamlines 

Slope of projected 
streamline with - Cotangent 8 
respect to e = o" 

Irrotatlonallt~ (n+l)=O 

Linearity in la 
u and w I j 

lb Not possible for this case 

Separation of 
P and G I 1 $9 Not possible for this case 

Comments and a = 0, no flow 
references 

, . ’ . 
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TABLE I, - Continued. SIMILARITY SOLOTIONS IN STATIONARY POLAR COORDINATES 

FOR SNAIL ANGLE VARIATION 

(c) Case III 

IT af (r)P-l 

w bf(r)@, b # 0 

Ordinary 
differential 
equatlon 

(30) a(m - 1) [liF'12 - 1] - y FF" - CF'" = 0 

(51) - $jF92 _ 1]+ am(ptG' _ 1) + p0" - cam = 0 

Boundary conditions F'(O) = 01(O) I F(0) = G(0) = 0, lim Fl(7t) - iim o'(n) - 1 
n-t- n-r- I 

Projection of main- 
stream on aurfaoe I spiral flow (a + 0) 

Slope of projected 9 tan 6 + E 
streamline with 
respect to B = 0 S - Etan 0 

Irrotationallty : W(r) - afl(r) - $ f(r) - o 

Linearity in 
u and w II I i: Not possible for this case 

Separation of (30) Separated 
F and Q (31) .a = m - 0 (see comments and references) 

Ccmmcnts and 
references 

Eq. (30) Is a Balkner-Skan equation, completely solved 
In refs. 4 and 5. 

If a = 0, eq. (la) and eq. (24) vanish, stagnation flow, 
boundary conditions not achievable. 

If a - b, F - Q: if m-l, F - Blaslus B 
Rd. 16, eq. (9:12): a = b = -c < 0, m - 0. 
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TABLE I. - Concluded. SIMILARITY SOLU'l!IONS IN STATIONARY POLAR COORDINATES 

FOR SMALL ANGLE VARIATION 

(6) Case IV 

LJ af (r)emwl 

w 0 

if bf(r)em, b f 0 

n +Qgy2 _ y(&y2, c # o 

Ordinary (32) a(m - 
differential 

1) EF'12 - 1] _ ?$!FpP" _ cF"'r 0 

equation; 
I (33) - $[jP')2-&am(P'G') - $hlP - c(fm* 0 

Boundary conditions Ff(O)=G'(O)-F(O)- G(O)=O, llm Fl(n)=l, llm G'(t7)-0 
n+- n- 

Projection of main- r _ c 
stream on surface , circular-flow streamlines 

Slope of projected 
streamline with - Cotangent 9 
respect to @=O 

Irrotatlonallty f'(r) + $ f(r) = 0 

Linearity in la 
u and w t I 

Ib Not poselble for thle case 

Separation of 
I I 
32 Separated 

P and Q 33 a = 0 (See comments and references) 

Comments and Eq. (32) Is a Falkner-S&n equation completely solved In 
references refs. 4 and 5. 

If a'= b, F + G (see boundsry conditions) 
If m=l, F = Blaslus F 
Ref. 9: c=a=b,m=l. 
If a = 0, no flow. 

. 
. : 
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Figure 2. - Continued. Limiting flow deflection in circular charmel. 



(c) Comparison of translate solution with mall-angle solution and smoke pattern. 

Pigure2. - CoIlcluaed, Limiting flov deflection in circular channel. 
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